
J. Fluid Mech. (2008), vol. 608, pp. 71–80. c© 2008 Cambridge University Press

doi:10.1017/S002211200800222X Printed in the United Kingdom

71

Steady streaming within a periodically
rotating sphere

RODOLFO REPETTO1,2, JENNIFER H. S IGGERS2

AND ALESSANDRO STOCCHINO3

1Department of Engineering of Structures, Water and Soil, University of L’Aquila, Italy
2Department of Bioengineering, Imperial College London, UK

3Department of Constructions and Environmental Engineering, University of Genoa, Italy

(Received 20 March 2008 and in revised form 13 May 2008)

We consider the flow in a spherical chamber undergoing periodic torsional oscillations
about an axis through its centre, and analyse it both theoretically and experimentally.
We calculate the flow in the limit of small-amplitude oscillations in the form of a
series expansion in powers of the amplitude, finding that at second order, a steady
streaming flow develops consisting of two toroidal cells. This streaming behaviour
is also observed in our experiments. We find good quantitative agreement between
theory and experiments, and we discuss the dependence of the steady streaming
behaviour as both the oscillation frequency and amplitude are varied.

1. Introduction
In this paper, we shall consider flow in a sphere undergoing torsional oscillations.

Such oscillations are known to produce steady streaming, defined as the time average
of a fluctuating flow. This work is motivated by the study of the flow in the vitreous
humour of the eye during saccadic rotations of the eyeball, i.e. rapid movements
of short duration. When large quantities of a drug are required to be delivered to
the retina, intra-vitreal injection is often the most satisfactory method (Xu et al.
2000). The drug particles are subsequently advected and diffused around the vitreous
humour, and any steady streaming plays an important role in the advection over long
times (Riley 2001). In healthy young subjects, the vitreous body has the consistency
of a gel and undergoes little movement with eye rotations. However, typically, with
advancing age a progressive collapse of the collagenous framework occurs, leading to
the liquefaction of the vitreous body (synchysis). Under these circumstances advection
is thought to be by far the most important transport process in the vitreous cavity
(Maurice 2001). Advection might also play an important role in vitrectomized eyes
in which the vitreous is replaced by tamponade fluids, typically silicone oils.

A number of workers have examined steady streaming flows. Classic examples
include acoustic streaming (Riley 2001), such as the quartz wind caused by an
ultra-high-frequency sound beam, Rayleigh streaming near to a solid boundary and
oscillatory pipe flow (Lyne 1971). The phenomenon of steady streaming was reviewed
by Riley (1967) who discussed flows around a solid body in an infinite fluid bath
performing periodic prescribed translational oscillations. The flow is governed by two
dimensionless parameters, the amplitude ε and the Womersley number α (proportional
to the square root of the oscillation frequency). At leading order in the limit of small-
amplitude oscillations, the dominant balance is between the time-dependent inertial
term and the viscous term, giving rise to a velocity field that varies sinusoidally in time.
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At next order, the convective inertial terms drive a steady streaming contribution to the
solution. This steady streaming has an associated streaming Reynolds number, equal
to εRe, where Re is the conventional Reynolds number, defined as εα2. Riley (1967)
showed that asymptotic techniques can be adopted to study the steady streaming
characteristics.

Riley (2001) also discussed torsional oscillations of a body in an infinite fluid bath
about its axis. If the body is cylindrical there is no steady streaming, but Gopinath
(1993) showed analytically that for an oscillating sphere at high Womersley numbers,
a thin Stokes layer is formed at the surface of the sphere, and that outside this there is
steady streaming from the poles of the sphere to the equator. For large values of the
streaming Reynolds number, a radial jet of fluid is ejected at the equator. This system
was also investigated experimentally and numerically by Hollerbach et al. (2002) for
large Womersley numbers.

The motion of the vitreous humour owing to eyeball rotations has already been
studied by David et al. (1998). They considered a sphere filled with a viscoelastic fluid
undergoing small-amplitude oscillations, and calculated the leading-order azimuthal
flow, though not the steady streaming. They also performed a few fully numerical
simulations assuming a Newtonian fluid and observed the generation of a steady
streaming. Dyson et al. (2004) also studied the flow within a periodically rotating
sphere in the limit of small-amplitude oscillations. At second order, they argued
by inspection of the governing equations that a steady streaming was expected to
form, but did not solve the problem. However, they considered the case of large
Womersley number and found that a boundary layer forms at the surface of the
sphere that drives the steady streaming in the interior. They derived the flow in the
boundary layer analytically. Steady streaming in a sphere was also observed through
flow visualizations by Repetto, Stocchino & Cafferata (2005). This flow consists of
two circulation cells, one in each hemisphere, along which fluid particles close to the
equatorial plane move towards the centre, then towards the poles close to the axis
of rotation and finally back again close to the wall towards the equator. The above
contributions merely provide a qualitative description of the steady streaming in a
sphere and, in particular, do not investigate the dependence of the streaming intensity
and the circulation cell shape on the controlling parameters.

We study this problem in the case of a sphere filled with a Newtonian fluid. In § 2,
we derive and solve the governing equations to find an analytical expression for the
leading-order contribution to the steady streaming in the limit of small-amplitude
oscillations. Then in § 3, we describe the experimental set-up and procedure for data
analysis. The theoretical and experimental results are presented and compared in § 4,
and a discussion follows in § 5.

2. Formulation of the problem and solution
We consider a hollow sphere performing torsional periodic rotations about an

axis passing through its centre. The sphere is filled with a Newtonian fluid which is
set in motion by the domain rotations. The dimensionless governing equations and
no-slip boundary conditions for the velocity u and pressure p are derived from the
Navier–Stokes and continuity equations, and read:

α2 ∂

∂t
u + α2u · ∇u + ∇p − ∇2u = 0, ∇ · u = 0, (2.1a)

u = v = 0, w = ε sinϑ sin t (r = 1), (2.1b)
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where t denotes time, ε the amplitude (in radians) of the domain rotations and (u, v, w)
the velocity components, expressed in spherical polar coordinates (r, ϑ, ϕ) (which
denote the radial, zenithal and azimuthal directions, respectively). The following
scalings from the corresponding dimensional quantities have been adopted

u =
u∗

ω0R0

, t = t∗ω0, r =
r∗

R0

, p =
p∗

μω0

, (2.2)

where ω0 denotes the angular frequency of the domain oscillations, R0 the sphere
radius and μ the dynamic viscosity of the fluid. Moreover, we have introduced
the Womersley number of the flow which characterizes the frequency, defined as

α =
√

R2
0ω0/ν, with ν the kinematic viscosity of the fluid. In the limit of large

α, the Womersley number is the ratio between the radius of the sphere and the
thickness of the boundary layer at the wall. The flow is governed by the two
dimensionless parameters α and ε. We assume ε to be small and seek an axisymmetric
(ϕ-independent) solution of the problem of the form

u = εu1 + ε2u2 + O(ε3), p = εp1 + ε2p2 + O(ε3). (2.3)

The solution we will develop is valid for any value of the Womersley number α, and
therefore for any value of the streaming Reynolds number. Note that most types of
eye rotations have small amplitude, for example, reading has typical value of ≈ 0.15
rad (see Dyson et al. 2004). Values of α vary widely, from order 1 to a few hundreds,
as both the frequency and the viscosity of the fluid may change over several orders
of magnitude.

2.1. Order ε1

In (2.1) the equations for the radial and zenithal components, u1 and v1, of u1 and the
pressure, p1, decouple from the equation for the azimuthal component w1. Since the
equations and boundary conditions for u1, v1 and p1 are homogeneous, the solution
is u1 = v1 = 0 and p1 is constant, whilst w1 satisfies

∂w1

∂t
=

1

α2

[
1

r2

∂

∂r

(
r2 ∂w1

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂w1

∂ϑ

)
− w1

r2 sin2 ϑ

]
, (2.4)

w1 = sinϑ sin t (r = 1), (2.5)

which has solution

w1 = g1(r)e
it sinϑ + c.c., g1(r) = − i

2r2

(
sin kr − kr cos kr

sin k − k cos k

)
, k = e−iπ/4α, (2.6)

where c.c. denotes the complex conjugate.
In figure 1, we show azimuthal velocity profiles on the equatorial plane (ϑ = π/2)

at different times for two different values of the Womersley number α. In the limit
α → 0, profiles of w1 tend to become straight lines, which corresponds to rigid-body
flow, whereas at large values of α, an oscillatory boundary layer forms at the wall,
and there is no leading-order motion in the interior.

2.2. Order ε2

We decompose the terms into their time harmonics by setting

u2 = u20 +
{

u22e
2it + c.c.

}
, p2 = p20 +

{
p22e

2it + c.c.
}

,

u1 · ∇u1 = F0 +
{

F2e
2it + c.c.

}
,

}
(2.7)
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Figure 1. Order ε solution. Azimuthal velocity profiles on the plane ϑ = π/2 at different
times. (a) α = 5, (b) α = 15.

where u20, u22, p20, p22, F0 and F2 are independent of time. The leading-order
contribution to the steady streaming is given by u20, and therefore we neglect u22, p22

and F2 in this analysis. The steady component of (2.1) at order ε2 is

∇2u20 − ∇p20 = α2F0, ∇ · u20 = 0, (2.8a)

u20 = v20 = w20 = 0, (r = 1), (2.8b)

Following the approach used by Quartapelle & Verri (1995), we expand all terms
as a sum of vector spherical harmonics, which are given by

Pm
n (ϑ, ϕ) ≡ r̂(ϑ, ϕ)Y m

n (ϑ, ϕ) (n � 0), (2.9a)

Bm
n (ϑ, ϕ) ≡ 1

sn

r∇Y m
n (ϑ, ϕ), Cm

n (ϑ, ϕ) ≡ 1

sn

∇ × [r(ϑ, ϕ)Y m
n (ϑ, ϕ)] (n > 0), (2.9b)

for −n � m � n, and Y m
n (ϑ, ϕ) denotes the normalized spherical harmonic;

in particular, Y 0
n (ϑ, ϕ) =

√
(2n + 1)/(4π)Pn(cos θ), where Pn is the nth Legendre

polynomial (see for instance Arfken & Weber 2001) and sn =
√

n(n + 1). For any
pair m and n, the vectors Pm

n , Bm
n and Cm

n are mutually orthogonal; Pm
n is radial,

whilst Bm
n and Cm

n span the zenithal and azimuthal components, (and B0
n and C0

n are
a zenithal and azimuthal vector, respectively). The orthogonality conditions satisfied
by Pm

n , Bm
n and Cm

n are described in detail by Quartapelle & Verri (1995).
Using the orthogonality properties of the vector spherical harmonics, it may be

shown that

F0 = FP0(r)P0
0(ϑ, ϕ) + FP2(r)P0

2(ϑ, ϕ) + FB2(r)B0
2(ϑ, ϕ) (2.10)

where

FP0 = − 8
3

√
π

g1g1

r
, FP2 = 8

15

√
5π

g1g1

r
, FB2 = 4

15

√
30π

g1g1

r
. (2.11)

Owing to the special behaviour of the vector spherical harmonics under vector
calculus, operators u20 = (u20, v20, w20) and p20 can be expanded as

u20 = u20,0(r)P0
0(ϑ, ϕ) + u20,2(r)P0

2(ϑ, ϕ) + v20,2(r)B0
2(ϑ, ϕ), (2.12a)

p20 = p20,0Y
0
0 (ϑ, ϕ) + p20,2Y

0
2 (ϑ, ϕ). (2.12b)

Note that the azimuthal velocity component w20 vanishes, and velocity vectors of the
steady streaming lie on the planes containing the axis of rotation.
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By substituting the expansions (2.12) into (2.8), the following ordinary differential
problem in r is obtained

d2

dr2
u20,0 +

2

r

d

dr
u20,0 − 2

u20,0

r2
− d

dr
p20,0 = α2FP0, (2.13a)

1
r2

d

dr
(r2u20,0) = 0, (2.13b)

d2

dr2
u20,2 +

2

r

d

dr
u20,0 − 8

u20,2

r2
+

2
√

6

r2
v20,2 − d

dr
p20,2 = α2FP2, (2.13c)

d2

dr2
v20,2 +

2

r

d

dr
v20,2 − 6

r2
v20,2 +

2
√

6

r2
u20,2 −

√
6

r
p20,2 = α2FB2, (2.13d)

d

dr
u20,2 +

2

r
u20,2 −

√
6

r
v20,2 = 0. (2.13e)

This system is subject to homogeneous boundary conditions at r = 1 and regularity
conditions at r = 0.

The solution of (2.13) subject to the boundary conditions is

u20,0 = 0, (2.14a)

p20,0 = P20 +

∫ r

0

−α2FP0(r
′) dr ′, (2.14b)

u20,2 = c1r + c2r
3 + rI1(r) +

1

r2
I2(r) + r3I3(r) +

1

r4
I4(r), (2.14c)

v20,2 =
1√
6

(
3c1r + 5c2r

3 + 3rI1(r) + 5r3I3(r) − 2

r4
I4(r)

)
, (2.14d)

where the pressure is unique up to the arbitrary constant P20 (we omit the expression
for p20,2, which can be immediately computed from (2.13d)), and

c1 = −I1(1) − 5
2
I2(1) − 7

2
I4(1), c2 = 3

2
I2(1) − I3(1) + 5

2
I4(1). (2.15)

where

I1 = −α2

10

(
rFP2(r) − 2

∫ r

0

FP2(r
′) dr ′

)
, I2 =

α2

10

(
r4FP2(r) − 5

∫ r

0

FP2(r
′)r ′3 dr ′

)
,

(2.16 a, b)

I3 =
3α2

70

[
FP2(r

′)

r ′

]r

0

, I4 = −3α2

70

(
r6FP2(r) − 7

∫ r

0

FP2(r
′)r ′5 dr ′

)
. (2.16 c, d)

In (2.14), the part of the solution which diverges as r → 0 has been eliminated,
making use of the regularity boundary conditions at r = 0.

We then obtain the following expression for the velocity vector u20

u20 =

(
1

4

√
5

π
u20,2(3 cos2 θ − 1), −1

4

√
30

π
v20,2 cos θ sin θ, 0

)
, (2.17)

and the streamfunction, ψ20, is given by

ψ20 =
1

4

√
5

π
r2u20,2 sin2 ϑ cosϑ where u20 = ∇ ×

(
ψ20

r sinϑ
ϕ̂

)
. (2.18)
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The integrals (2.16) do not admit an analytical solution and have been computed
numerically using the recursive adaptive Simpson quadrature method.

In the limit of small α, we may calculate these integrals analytically to find

ψ20 =
α6

415 800
r3(1 − r2)2(2 + r2) sin2 ϑ cosϑ + O(α8), (2.19a)

u20 =
α6

415 800
[r(1 − r2)2(2 + r2)(3 cos2 ϑ − 1)

− 3r(1 − r2)(2 − 3r2 − 3r4) sinϑ cos ϑ, 0] + O(α8), (2.19b)

and thus for small α, the intensity of the steady streaming is proportional to α6.
On the other hand, for large α, we may approximate FP2 away from the origin as

FP2 =
2

3

√
π

5

(α2r2 −
√

2αr + 1)

r5(α2 −
√

2α + 1)
e−

√
2α(1−r) + O(r−3e−

√
2α). (2.20)

We may evaluate the integrals appearing in (2.16a–d) using repeated integration
by parts to obtain an infinite series in decreasing powers of α. Hence, we find the
leading-order expression for ψ20 and u20 to be

ψ20 = 1
8
r3(1 − r2) sin2 ϑ cos ϑ + O

(
1
α

)
, (2.21a)

u20 =

(
1
8
r(1 − r2)(3 cos2 ϑ − 1), − 1

8

(
3r − 5r3 +

2

r3
e−

√
2α(1−r)

)
cosϑ sinϑ, 0

)
+ O

(
1
α

)
.

(2.21b)

The final term in the ϑ-component of u20 decays rapidly far from the wall and ensures
the no-slip condition is satisfied. This means that the steady streaming flow also has
a boundary layer at r = 1 for large α. There is no corresponding contribution to
the streamfunction ψ20, as it would appear at order 1/α. Both the above expressions
require r 
 1/α, whereas the expressions for ψ20 and u20 are absorbed into the error
term in the boundary layer at the wall for 1 − r � 1/α.

3. Experimental set-up and data analysis
For the present experiments, we employed the apparatus that was described in

detail in Repetto et al. (2005); the set-up was suitably modified to deal with the
specific needs of the present investigation. We briefly recall the characteristics of the
main components. The experimental model consists of a spherical cavity of radius
equal to 40.8 mm, carved in a Perspex cylinder. The Perspex model is set in rotational
motion around its vertical axis by an electrical motor, and for these experiments a
periodic sinusoidal temporal law is imposed on the motor shaft.

The working fluid is a 98 % pure glycerol solution, whose refraction index matches
that of the Perspex well. This avoids light refraction at the interface between the
two materials. The dynamic viscosity of the glycerol solution was measured at the
beginning of each experimental run, using a falling ball viscometer. The oscillatory
movement of the model was synchronized with a two-dimensional particle image
velocimetry (PIV) acquisition system, employed to measure two-dimensional velocity
fields.

The acquisition protocol was chosen so as to register a single frame with a sampling
rate equal to the frequency of the sinusoidal signal assigned to the motor. This enabled
the oscillatory component of the flow to be eliminated and the steady streaming
motion to be found directly. Velocity measurements were performed both on the
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Number of runs ε (rad) ν (10−3 m2 s−1) f (Hz) α

Series 1 28 0.0885 1.041 ± 0.010 1–20 3.1–15.9
Series 2 10 0.0442–0.4384 1.161 ± 0.010 2 4.7
Series 3 5 0.0885 1.161 ± 0.010 2–10 4.2–10.5

Table 1. Main experimental parameters.

equatorial plane and on a vertical plane. In all cases, the experimental run lasted
about 500 periods. The image pairing in our procedure is an integer multiple of the
oscillation period, 2π/ω0. The recording protocol imposes upper and lower limits on
the measurable velocities, restricting the experiments to a fixed range of Womersley
numbers for a given amplitude ε: the fact that the shortest time interval of the
image pairing is one oscillation period establishes the maximum measurable velocity,
whereas too long a time interval leads to an unacceptable percentage of outliers owing
to out-of-plane particle loss. At least 450 velocity fields were measured for each run,
an ensemble average was performed and the corresponding standard deviations for
both velocity components were evaluated, which were found to be at most 5 % of the
average velocity. Velocity vectors were then interpolated on a polar grid; finally, for
the equatorial plane measurements, an average of the radial velocity component was
also performed along the azimuthal direction, ϕ. The standard deviation value was
propagated through the whole post-processing, eventually leading to the value used
to plot the error bars shown in the results in § 4.

Three series of experiments were carried out. Velocity measurements on the
equatorial plane were performed during the first two series, with the aim of
investigating the dependence of the steady streaming on the Womersley number α

for an assigned oscillation amplitude ε (series 1) and on the oscillation amplitude for
a given Womersley number (series 2). In addition, vertical plane measurements were
carried out (series 3) with the goal of investigating the shape of the steady streaming
circulation cell. The main experimental parameters are summarized in table 1.

4. Results
In figure 2(a), the steady streaming flow predicted by the theory, u20, is shown

on a plane containing the axis of rotation (z in the figure). This flow consists of a
circulation whereby fluid particles close to the equatorial plane move towards the
centre of the sphere, then along the axis of rotation towards the poles and back
again to the equatorial plane close to the wall. This picture is consistent with the
flow visualizations presented by Repetto et al. (2005) (see figure 4 of their paper) and
numerical simulations performed by David et al. (1998). The contour lines show the
absolute magnitude of the velocity, which attains its maximum value on the axis of
rotation. In figure 2(b), the corresponding experimental results are reported. Contour
lines refer to the same values of the streaming velocity as in figure 2(a). The agreement
between theoretical and experimental results is very satisfactory both in terms of the
shape of the circulation cell and of the streaming intensity. This is true for all five
experiments of series 3.

In figure 3(a), the absolute value of the maximum streaming velocity, |u20|m, on
the plane z = 0 is shown versus the Womersley number. This quantity is a measure
of the streaming intensity. The solid curve denotes the theoretical prediction, and
experimental results are also reported (series 1 runs) with the corresponding error
bars. It appears that the streaming intensity strongly depends on α. In particular
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Figure 2. Steady streaming circulation cell and contour lines of the absolute value of the
velocity on the plane containing the axis of rotation, (a) theoretical results, (b) experimental
measurements from series 1 (α = 5.1, ε = 0.0885).
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Figure 3. (a) Streaming intensity versus Womersley number for both theory (solid curve)
and series 1 experiments (symbols) with ε = 0.0885. The dashed curve shows the small α
limit derived from (2.19b); the dotted line shows the large α limit from (2.21b). (b) Direct
comparison of theory and experimental results. The solid line shows an exact match; broken
lines indicate errors of ±10 %.

as α → 0, |u20|m rapidly decreases to small values, consistent with the predicted α6

scaling (see dashed curve obtained from (2.19b)); conversely as α grows, |u20|m also

grows, and tends to the limit 1/(12
√

3) (see dotted line and (2.21b)).
In figure 3(b), theoretical and experimental results are directly compared, showing

an overall good agreement. The broken lines at each side of the bisecting line delimit
the 10 % error region, and almost all points fall within this band. Note, however, that
theoretical predictions consistently slightly overestimate the measured values, which
suggests that terms neglected in (2.3) (namely order ε4 terms) induce a decrease of
the streaming velocity.

This speculation is supported by figure 4, where the streaming intensity |u20|m is
plotted versus the amplitude of rotations ε (series 2 experiments). The theoretical curve
(solid line) is a parabola (the next correction would be order ε4). All experimental
points lie below the theoretical curve and the departure from the parabolic shape
increases as ε grows, as expected, suggesting that order ε4 terms would probably give
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Figure 4. Streaming intensity versus oscillation amplitude for both theory (solid curve) and
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α. The thick curve shows the prediction of the asymptotic limit as α → ∞ given by (2.21b). (b)
Comparison of theory and series 3 experiments with ε = 0.0885, and α = 6.11 (solid curve and
triangle), α = 8.74 (dash-dot curve and diamond) and α = 13.35 (dashed curve and inverted
triangle).

a negative contribution to the steady streaming intensity. Note, however, that the
experimental error also grows with ε, as it was more difficult to perform experiments
when the streaming intensity was large. This was because for large streaming, the
ideal time interval of image pairing is of the same order as the oscillation period;
hence fine tuning of this time interval is not possible since the ratio of the two times
is restricted to integer values.

Finally, let us analyse in more detail the effect of the value of the Womersley number
on the steady streaming pattern. This is done by plotting the radial distribution of the
radial component of the streaming velocity in the equatorial plane (figure 5. Again,
solid lines denote theoretical results and symbols experimental measurements. It is
worth noting that the velocity profile along a radius on the plane z = 0 has the
same radial structure as that along the axis of rotation, as is apparent from (2.17).
Figure 5 shows that the maximum of the velocity profile moves slightly towards
the wall as α increases, i.e. the centre of the circulation cell moves outwards, and
tends towards the limiting profile obtained from (2.21b), shown by the solid curve in
figure 5(a). Figure 5(b) shows that the agreement with the experimental measurements
is satisfactory, and indeed we found good agreement for all values of the Womersley
number (although, for the sake of clarity, only three profiles are given in the plot).
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5. Conclusions and future developments
In this paper we have studied the steady streaming flow generated in a

sphere exerting periodic sinusoidal rotations about its axis both theoretically and
experimentally. There is good quantitative and qualitative agreement between the
experimental and theoretical results. The streaming flow travels from the centre of the
sphere towards the poles along the axis, then towards the equator close to the wall
before returning towards the centre of the sphere near to the equatorial plane. The
streaming intensity, as measured by the maximum speed attained on the equatorial
plane, grows as α increases, is proportional to α6 for small α and tends to a constant
value for large α. Thus, for low values of the Womersley number the streaming is
weak, suggesting that for high-viscosity fluids the mixing is reduced, which may have
implications on the choice of tamponade fluid used after vitrectomy. Finally, there is
only a weak dependence of the shape of the steady streaming on the value of α.

The model described here represents a first step in describing the mixing processes
occurring during saccadic rotations of the eye. In reality, the vitreous chamber is
not a perfect sphere, in particular owing to the presence of the lens which causes
an indentation on the anterior side. This effect has been shown to be important in
inducing fluid mixing in the vitreous chamber by Stocchino, Repetto & Cafferata
(2007). In addition, vitreous humour is normally a viscoelastic fluid. We intend to
account for these features in future work.
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